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In geyn’ s paper [I], methods of differential geometry were employed to 
study the properties of the integral surfaces of Busemann’s equation [21, 
which describes the irrotational conical flow of a gas. 

As an example of the application of these methods, he considered the 
problem of the supersonic flow of an inviscid gas past a triangular 
plate at an angle of attack, without any side-slip. Reyn presented his 
proof of the impossibility of continuous flow on the upper surface of 
the plate, and some changes in the pattern of the flow, neither of which 
is sufficiently justified. 

The above point, together with the desire to reply to some broad 
critical remarks of Reyn on papers [3-T], compelled the author to Write 
the present note. 

Let us consider a triangular plate having an 
angle of attack and no side-slip in an inviscid 
gas flow, having a speed II, and a Mach number 
Ml > 1. We assume that the edges of the wing are 
supersonic; thus the conical flows on the top and 
on the bottom of the wing do not interact, and 
may be treated separately (Fig. 1). 

Fig. 1. 

In conical flows, the Cartesian components of the velocity, u, vz w, 
the entropy S, and the pressure p all depend only on angular coordinates, 
for which we set $ = x/z, q = y/z, the z-axis being directed along the 

axis of symmetry of the wing (Fig. 1). For irrotational conical flows, 

the conical potential F(<, q) = t-‘?(x, Y, .zf (9 being the velocity 
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potent ial) satisfies the equation 

L(F)=AFEE+2BBE,-+CF,, =O (1) 

A = aa (1 + E2) - (u - @B)~ 

B=aaEq-(u- Ew)(v--fpo) 

c = G(l + q”) - (u i q”)* 

Fig. 2. 

0) = a,* - q(u*+V~+WWV~~) 

Here a1 is the sound speed IO the till- 

L3 
perturbed flow, a the looal sound speed, 
and y the adiabatic eXpOOeot. BecPure of 
symmetry, we show the mapping of the uDp@r 

flow [6-S] in the cq-plane only for e 7 0 
(Fig. 2). 

The wing is represented by the segment O-3. The envelope of the Mach 
cones (of the unperturbed flow) with vertices on the lateral edge is re- 
presented by the arc 1-2 of the Mach cone with vertex at the point 0 
(Fig. 1) and the segment 2-3. The flow at the lateral edge consists of a 
Prandtl-Meyer flow.followed by a uniform flow bordering on the wing sur- 
face, and represented by the region 3-6-9-5-4-3. The Praodtl-Meyer flow 
has a bundle of straight characteristics of Equation (1) passing through 

the point 3 (straight lines 3-2, 3-6), i.e. it is a centered simple wave. 
The region of general conical flow above the middle part of the wing is 
bounded by the shock wave 2-7 (which lies close to the curved character- 
istic 2-6 of the Prandtl-Meyer flow, the straight characteristic 6-5. 
and the arc 5-4 of the Mach cone for the uniform flow in the region 3-4. 
5-9-6-3) and also by the arc l-2 of the Mach cone for the unperturbed 
flow. 

10 [81, the author rejected the introduction of “possible” shocks 
similar to the shock 2-8 near the Mach cone f-2. independently of the 
arguments of Reyn, who writes [ll that the flow must be expanding near 
the Mach cone 1-2. and consequently, one should not expect the shock 2-8. 
The argument for introducing the shock 2-8 lies not in the fact (which 
the author did not notice) that the flow must be expanding in the 
neighborhood of 1-2. but in the mathematical difficulties in joining the 
flow near 1-2 to the rest of the flow, particularly at the point 2, where 
the flow behind 1-2 must be joined along the streamline 2-o with the 
flow behind the shock wave 2-7 or characteristic 2-6. 

Recently, the author.[Sl found the singular points, justifying the 
assumption that the flows are joined at point 2; this permits not in- 
troducing the shock 2-8 (this conclusion also applies to other similar 
instances, for example, to the flow below a triangular plate, the edge 
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of a rectangular plate, etc. ). \Ye note that the flew scheme with a shock 
2-8 includes the flow scheme with an arc of the Mach cone f-2 as a special 

case. Reyn does not consider the question of joining the flows. 

If we assume that the flow about the upper part of the plate is con- 

tinuous, i.e. that the shock 2-7 is absent, then the boundary of the 

general conical flow will be the line i- 2-6- 5-4. The arc 5-4 of the Mach 

cone must be included in the boundary for all angles of attack for which 

the straight characteristic 6-5 extended to the wing surface makes an 

angle-a > a/2 with it (Fig. 2), since the data on the characteristic 

5-13 together with the flow boundary condition on the segment 4-13 uni- 

quely determine the flow in region 5-13-4, and this flow is uniform. If 

for increased angles of attack, a becomes less than n/2, then the arc 

5- 4 naturally disappears. 

The impossibility of a continuous flow was established by the author 

14,61 in the following manner. The characteristic 5-6 is straight; hence 

the flow joining it is a simple wave, bounded by the curvilinear charac- 

teristics 6-12 and 5-if. Let us move along an arbitrary curvilinear 

characteristic 9-10 of the simple wave from point 9 to point 10. In the 

terminology of [41, this movement is “in the direction of the velocity”. 

In this connection [4], if on this characteristic a parabolic point (AC- 

B2 = 0) of Equation (1) is encountered then it will be a point on the 

envelope of the straight characteristics of the simple wave; the accele- 

ration on the straight characteristic passing through the parabolic point 

is everywhere zero, except at the parabolic point, at which the accelera- 

tion depends on the direction of approach to the point. This shows that 

in the region 5-6-12-IO-if of the simple wave, there cannot occur a con- 

t inuous parabolic 1 ine, along which the simple wave may join to an 

elliptic-type flow occurring inside the region O-4-5-6-2-f. (At the point 

0 the flow is always elliptic, AC - B* > 0.) One can consider the case, 

when the characteristics 6-12 and 5-if meet at one parabolic singular 

point. This case is too artificial, as is the other case when a uniform 

flow region adjoins the characteristic 12-11. For these reasons, the 

author already introduced the shock 2-7 in [41. 

Reyn uses the following argument. Let us move along the streamline 

3-4-O along the wing from point 3 to the point 4 on the Mach cone 4-5. 

After 5-4 the flow must immediately start compressing, but such flows do 

not exist. By this argument, when passing from the hodograph space to the 

physical <q-plane the line 5-4 becomes a limiting line (of the second 

type in the terminology of Reyn), and the flow must change its direction 

without intersecting 5-4. All the streamlines must hit the point 0, where 

a Ferri singularity occurs, so the flow must yet again change its direc- 

tion, i.e. there must be another limiting line (of the first type), after 

which the streamlines reach 0. Such a situation obtains for all the 
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stream1 ines. 

Consequently. Reyn’s argument is based on the fact that the Mach cone 
5-4 cannot adjoin a flow which starts as an expansion and then becomes a 
compression. 

This argument is very plausible: however, the flow adjoining 5-4 is 
a three-dimensional nonaxisymmetric flow, the properties of which are 
little understood. and therefore the author preferred the argument ad- 
vanced above to prove the impossibility of continuous flow, since it re- 
quires fewer essential assumptions oh the properties of the flow. 

Assuming the existence of limiting lines. Reyn attempted to find some 

confirmation of their existence; for this he considered the differential 

properties of the integral surface in the hodograph space along the 
characteristic 2-6. Here Reyn erred. Be arrived at the conclusion that at 
some intermediate point on the characteristic 2-6, a limiting line of the 
first kind is tangent to the characteristic, and here a singular point is 
formed (the acceleration becomes infinite). 

We shall show that such singular points cannot occur in the solution 
adjoining the simple wave along 2-6. Let us introduce [4] in the neighbor- 
hood of the characteristic 2-6 curvilinear coordinates go = cp(c, q), v = 

v(c. sl), such that 9, = 0 corresponds to the characteristic 2-6. Then Equa- 
tion (1) is transformed into the form 

Let f2, fl be the limit values taken while the curve 9 = 0 is 
approached from different sides; let if]-= fz - fl denote the jump in the 
function f. 

The functions F, Fe, F,., are cant inuous across ‘p = 0; it may be shown 
that 

IFEEl = %Es, tl’;n I = Qq,,. IF,,,, I= kqva 

The coefficient of the jump In the second derivatives h = 
[FWJ 

satis- 
fies the equation 

Subscript 1 denotes the values of Q(q, T)~ and F 

t v 
taken when p = 0 

is approached from the side of the simple wave. In he simple wave. F has 
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no singular Points (except the point 3), hence the coefficients of (3) 
are regular on the characteristic 2-6. If at some point on 2-6, the 

acceleration becomes infinite, as was supposed 

by Reyn, then this point is a singularity of 

Equation (3). Equation (3) is nonlinear, there- 
2 3 

t 
fore, its solution may have fixed and moving / 

/’ \ 
singularities. A fixed singular point occurs ‘$6 
at point 2, where 

~ 

17 

Q (cpf 9) =o 
There are no other fixed singularities on 0 

e 
the characteristic 2-6. In fact, if we move 

along the curvilinear characteristic 2-6 of Fig. 3. 

the simple wave from point 2 to point 6, i.e. 

move “in the direction of the velocity” [41, and meet a point where 

Q(?% ly) = 0, then this point is a parabolic point (AC - B2 = 0) for Equa- 

tion (1). But this point is a point on the envelope of the straight 

characteristics of the simple wave [4], which is impossible, since this 

envelope is the single point 3 (Fig. 2). 

Let us investigate in detail the behavior of the solution of (3) in 

the neighborhood of point 2 (Fig. 2). If we rotate the coordinate system, 

so that z becomes the direction of the velocity on the characteristic 

2-3, and so that the characteristic 2-3 is parallel to the c-axis (Fig.B), 

then the coordinates of point 2 will be < = 0, JJ = If1 = (MI2 - 1)-l’*, 

and the equation of the characteristic 2-6 near the point 2 will have 

the form 141 

Moreover. the derivatives of the conical potential F at the point 2 

are 

Introducing the coordinates ‘p, y, thus defined 

and considering the behavior of F in the simple wave, we may write Equa- 

tion (3) near the point 2 in the form 

(a& j- , _) 2 -{- h ((yo-.- _) -1. 3, (/30 j- ‘ . .f> = 0 

where 
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Since p,, # 0, ye/as = 2 > 0, then [41 

lim3,=-- M,, 4Wl (M1a--i)a = 70 

e+o PO 
for LfO 

Knowing A(O). we find 

(Pm)2 = (F,,)l $ kpqa = - $$ ‘M1LT ‘I’ for $1-0 

In fact, either A a 0 everywhere on 2-6, and the qrrrntity (F9 )* co- 

incides with (FTo) 1 everywhere in the simple wave, or (F,,,,)p at t he point 

2 is given by (4) for any solution adjoining the characteristic 2-6. 

There is a singular point [81 at the point 2 (Fig. 3). When this point 
is approached from the sides c = + 0 and < = - 0 the singularltles are 
different. We shall not consider the singularity for c = - 0; we only 

note that the flow must expand near the point 
2 for < = + 0 is given by the relations 

2. The solution near point 

2Wl (Ml% - i)8 
‘=r+i Ml4 (ZX--cqE*+. . . 

(Ml* - I)” WI 
‘=-r+l Ml4 

xlp + . . . 

WI 
w=wl+- 

(Ml2 - 1)’ 

r+l MI’ 
Xfga + . . . 

Moreover, X = X(o) satisfies the equation 

(X’ + 2c- 400) X” + (ioci - 4) x 

with the boundary conditions 

( 
dX 

x = X(o), x’ = -& 

( 
w--tl 

a=E”1’ 1 (5) 

(q~ = (Ml’ - i)-“8) 

.12x=0 (6) 

X(1)=1, X’ (1) = 2 (7? 

(The conditions result from Formula (2.30) of [81, with us = 1, which 
corresponds to the characteristic 2-6.) The solutions of (8) satisfying 
(7) fall into two types, differing in the value of X’(1). The first type 
of solution is represented in the neighborhood of a = 1 by the expansion 

x (a) = i + 2 (0 - 1) + (0 1.1)s + c (a - ip + c (3”2 I) (0 - 1)' + . . . (8) 

where c is an arbitrary constant. The unique solution of the second type 
iS 

X (0) = i + 2 (a - 1) - (,s - i)a = - 2 + 4e - ca (9’ 

Substituting (9) into (51, and changing from o to c, q, we have 
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in the entire quadrant neighborhood < > 0, ql - rl > 0. From (10) it 
follows that when point 2 is approached in whatever direction F 

rlrl 
is de- 

fined by (4). 

But then approaching point 2 along the axis g = 0 

2wr 
( Ml2 - i)“, 

which is incompatible with the requirement of an expanding flow in the 
neighborhood of point 2 (Figs. 2,3). 

For all the solutions (8). we have the derivative at point 2 

All proper solutions F adjoining the characteristic 2-6 have the pro- 
perty that the derivative F 

T-l 
is given by (11) when the point 2 is 

approached along the characteristic 2-6, thus h I 0; that is, on the 
entire characteristic 2-6. the accelerations coincide with the accelera- 
tions of a Prandtl-Meyer flow, and therefore, cannot be infinite, as 
Reyn claimed. 

The physical basis for the formation of the shock 2-7 (Fig. 2) is the 
appearance (in the Prandtl-Meyer flow at the lateral edge) of a velocity 
component directed at the plane of symmetry .of the flow ($ = 0). For this 
reason, it is natural to assume that the shock 2-7 starts at the point 2, 
after which such a component appears on the characteristic Z-6. 

The author also considered a possible variation, when the lateral 
shock 2-7 is partially located inside the region O-f-2-6-5-4, and the 
shock enters this region at some point on the characteristic 6-5. An 
alternate version of Reyn’s, which assumes the shock to begin at some 
intermediate point on the characteristic 2-6. is improbable; since, if 
this were the case, then the point where the shock decays must be a 
singular point, which must show singulariti’es in some higher derivatives 
of F taken along the characteristic 2-6. But as shown above, the first 
derivative has no singularity on 2-6; the higher derivatives cannot have 
them either, since the equation for the coefficients of the discontinuity 
of the higher derivatives is linear, and cannot have any moving singular 

points. 

The author is grateful to S.F. Pal’kovich for discussions on the 
problem. 
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